
GCCS/DII COE System Integration Support

Scientific and Technical Reports:
DII COE Studies and Analysis
(Software Quality Compliance

Plan for DII COE 3.0)

January 22, 1997

Prepared for:

DISA/JEJA
ATTN: Claire Burchell

45335 Vintage Park Plaza
Sterling, VA 20166-6701

Contract Number: DCA100-94-D-0014
Delivery Order Number: 330, Task 6

CDRL Number: A029

Prepared by:

Computer Sciences Corporation
Defense Enterprise Integration Services

Four Skyline Place
5113 Leesburg Pike, Suite 700

Falls Church, VA 22041

THIS DOCUMENT IS UNCLASSIFIED

DII.30.FNL.DIICOE.SQCP

Defense Information Infrastructure (DII)

Common Operating Environment (COE)

Software Quality Compliance Plan for
DII COE

Version 3.0

January 22, 1997

Prepared for:

DISA/JEJA
ATTN: Claire Burchell

45335 Vintage Park Plaza
Sterling, VA 20166-6701

Prepared by:

Computer Sciences Corporation
Defense Enterprise Integration Services

Four Skyline Place
5113 Leesburg Pike, Suite 700

Falls Church, VA 22041

DII.30.FNL.DIICOE.SQCP

January 22, 1997 i

Table of Contents

Preface . iii

1. INTRODUCTION . 1-1
1.1 Purpose . 1-1
1.2 Scope of Plan . 1-2
1.3 Referenced Documents . 1-4

2. SOFTWARE QUALITY COMPLIANCE PROCESS . 2-1
2.1 Software Quality Compliance Process Goals . 2-1
2.2 Software Quality Compliance Information Collection . 2-2
2.3 Static Analysis of Source Code . 2-3
2.4 Static Analysis Metrics Dictionary . 2-6
2.5 Quality Criteria Profile . 2-6
2.6 Risk Population Assessment Process . 2-7
2.6.1 Minimum Set Analysis . 2-9
2.6.2 Medium-to-High Risk Population Analysis . 2-12
2.7 Emerging Risk Analysis . 2-14
2.8 Complexity and Quality Factors Analysis . 2-16
2.9 Static Analysis of API Code . 2-18
2.10 Trend Analysis of Application Versions Metric and QCP Risk Populations 2-18
2.11 Integration Test Effectiveness Analysis . 2-21
2.11.1 Application Portability Analysis . 2-22

3. COE SOFTWARE QUALITY EVALUATION SCHEDULE . 3-1

APPENDIX A: DII SOFTWARE QUALITY COMPLIANCE CHECKLISTS A-1
A.1 Conformance Analysis of API Code (Level 1) . A-2
A.2 Application Portability Analysis (Level 2) . A-2
A.3 Static Metrics Analysis (Level 3) . A-3
A.4 Trend Analysis of Complexity and Quality Factors and QCP Risk Populations (Level 4)

. A-4
A.5 Integration Test Effectiveness Analysis (Level 5) . A-4

APPENDIX B: BIBLIOGRAPHY . B-1

APPENDIX C: DII SOFTWARE QUALITY ASSESSMENT PROCESS C-1
C.1 Static Analysis Metrics Dictionary . C-1
C.1.1 Component Metrics Dictionary . C-1
C.1.1.1 Halstead’s Program Length . C-1
C.1.1.2 Halstead’s Difficulty . C-2
C.1.1.3 Cyclomatic Number . C-2
C.1.1.4 Essential Complexity . C-3
C.1.1.5 Design Complexity . C-3

DII.30.FNL.DIICOE.SQCP

January 22, 1997ii

C.1.1.6 Source Lines of Code . C-3
C.1.1.7 Control Density . C-4
C.1.1.8 Maximum Number of Levels . C-4
C.1.1.9 Number of Branching Nodes . C-5
C.1.1.10 Number of Input/Output Nodes . C-5
C.1.2 Call Graph Metrics Dictionary . C-5
C.1.2.1 Hierarchical Complexity . C-6
C.1.2.2 Structural Complexity . C-6
C.1.2.3 Average Paths . C-6
C.1.2.4 Number of Levels . C-7
C.1.2.5 Entropy . C-7
C.2 Quality Criteria Profile . C-8
C.2.1 QCP Formulas and Risk Assignment Intervals . C-8
C.3 Minimum Set Assessment Process . C-10
C.4 Emerging Risk Assessment Process . C-10
C.5 Complexity and Quality Analysis Assessment Process . C-10

List of Figures

Figure 1-1. COE Software Quality Compliance Assessment . 1-3
Figure 2-1. QCP Risk Population Intervals . 2-8
Figure 2-2. Steps in the Static Analysis Process . 2-9
Figure 2-3. Minimum Set Analysis Process . 2-10
Figure 2-4. Example of a High Risk Population and Minimum Set Distribution 2-11
Figure 2-5. Example of a Minimum Set Population . 2-12
Figure 2-6. Medium-to-High Risk Population Percentage Distribution 2-13
Figure 2-7. Example of a Medium-to-High Risk Population Analysis 2-14
Figure 2-8. DII Software Emerging Risk Analysis . 2-15
Figure 2-9. Example of an Expansion Factor Analysis . 2-16
Figure 2-10. DII Software Complexity and Quality Analysis . 2-17
Figure 2-11. Example of Software Complexity and Quality Analysis Information 2-18
Figure 2-12. Example of Trend Analysis of Medium-to-High Risk Population Growth 2-20
Figure 2-13. Example of Trend Analysis of Software Complexity and Quality Analysis 2-21
Figure 3-1. COE Candidate Evaluation Schedule . 3-1

List of Tables

Table 2-1. QCP Definitions . 2-2
Table 2-2. Component Metrics Dictionary . 2-3
Table 2-3. Call Graph Metrics Dictionary . 2-4
Table 2-4. Rules for Assigning Risk Values . 2-10

DII.30.FNL.DIICOE.SQCP

January 22, 1997 iii

Preface

The following conventions are used in this document:

Bold Used for information that is typed, pressed, or selected in executables
and instructions. For example, select connect to host.

Italics Used for file names, directories, scripts, commands, user IDs, document
names, and Bibliography references; and any unusual computerese the
first time it is used in text.

Underline Used for emphasis.

Arrows <> Used to identify keys on the keyboard. For example <Return>.

“Quotation Marks” Used to identify informal, computer-generated queries and reports, or
coined names; and to clarify a term when it appears for the first time.
For example “Data-Generation Report.”

Courier Font Used to denote anything as it appears on the screen or command lines.
For example tar xvf dev/rmt/3mm.

Capitalization Used to identify keys, screen icons, screen buttons, field, and menu
names.

DII.30.FNL.DIICOE.SQCP

January 22, 1997iv

This page intentionally left blank.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 1-1

1. INTRODUCTION

1.1 Purpose

Metrics analysis of software development products provides a non-intrusive process to identify
suspect medium-to-high risk components. The visibility gained from the resulting information can
be used proactively as an effective management technique to control the risks of integrating third
party software.

The essential value of metrics was elegantly expressed by the highly respected English chemist
Lord Kelvin, circa 1889, who stated at a lecture before the Royal Society:

When you can measure what you are speaking about and express it in numbers,
then you know something about it; but when you cannot measure, when you
cannot express it in numbers, your knowledge is of a meager and unsatisfactory
kind: but you have scarcely, in our thoughts advanced to the stage of a science.

The contents of the Defense Information Infrastructure (DII) Software Quality Compliance Plan
provides a description of the metric collection, analysis activities, and schedule. These collection
and analysis activities evaluate the level of compliance to the Common Operating Environment
(COE) software quality goals. The value of the compliance level assists the DII Engineering
Office in understanding the costs and risks of integrating software into the COE to provide
common functions. This understanding is used to determine the level of support needed for each
COE common function. Specifically, this document describes the metrics collection and analysis
process that will ensure the compliance to the software quality guidelines required to provide
functionality for the COE.

The degree and ease of “plug and play” open systems integration is highly dependent upon
compliance with the processes contained in the DII COE Integration and Runtime Specification
(I&RTS). An integral part of this compliance is the operational risk associated with each function
in the COE. The COE foundation for building open systems places the responsibility for most of
the integration activities on the developers to ease the burden of source code level integration. A
side effect of delegating this responsibility is that the COE is vulnerable to the unintentional
introduction of software with residual faults.

The metrics collection and analysis process provides measurable values of software quality levels
to assess the risk and level of support associated with software prior to becoming part of the
functions provided by the COE. These software quality levels are determined by a series of
automated, non-intrusive risk assessment processes.

The primary assessment process is the population analysis of software components that provide
COE functions. The informational value gained from the identification process is twofold:

C Understanding the level of support for the medium-to-high risk functions.

DII.30.FNL.DIICOE.SQCP

January 22, 19971-2

C Tracking the variations in the medium-to-high risk population as versions of the software
in the COE change.

Many software quality assessment techniques and metrics contributed from both the Government
and private sector are described in the literature. The majority of these techniques are oriented
from a specific developer’s goals and objectives. A mature development organization has access
to other types of supporting information to assess the degree of success in achieving an
institution’s Software Quality Assurance (SQA) goals using a specific metric set. An example of
such a metric is the subjective evaluation of the adequacy of the comments. Currently, the DII
does not have the information and resources required to perform this assessment for each of the
COE candidates. Another example of such a metric set is the cost and schedule information.

The process and techniques contained in this plan provide the DII Engineering Office with a
process that is objective, independent, repeatable, automated, and economical. The intent of this
process is to provide insight into the risks associated with COE candidate software. The data
provided by the process described in this plan is only part of the information used in the DII COE
candidate evaluation process.

1.2 Scope of Plan

The activities and processes described in this document provide an independent, non-intrusive,
and multi-factor assessment process to determine the level of support associated with COE
Software Quality compliance. The contents of this plan describe the processes and information
products resulting from:

C Analysis of component risk populations in applications.
C Complexity and quality analysis.
C Trend analysis of risk populations, complexity, and quality metrics.
C Compliance assessment of the COE Application Program Interfaces (APIs).
C Application integration testing effectiveness analysis.
C Application portability analysis.

The COE Software Quality compliance assessment process, depicted in Figure 1-1, uses
automated, non-intrusive techniques implemented with commercial off-the-shelf (COTS) analysis
tools. Specifically, the compliance assessment information is obtained by performing the metrics
collection and analysis tasks described in this document.

The information gained from the complexity metrics and the resulting risk population analysis,
Quality Criteria Profile (QCP), helps in both determining the level of support needed to integrate
a function into the COE and how problematic the integration task will be. Individually, this
information provides a small facet of a COE function candidate’s risk assessment. Combining the
QCP risk interval populations with metrics that assess compliance with COE APIs, code
portability, and robustness data provides the DII Engineering Office a realistic forecast technique
of the effort and associated risk of a candidate COE function.

The use of metrics for assessing COE software quality compliance
provides a quantitative process for the DII Engineering Office and
application owners to assess integration readiness.

DII uses a non-intrusive cost and risk reduction technique to
collect software quality compliance information for each candidate
prior to submission.

COE Candidate Owner - - DII -

Source Code
Reuse Libraries
Third Party

Complexity & quality metrics
 Risk interval populations

 Portability Analysis

COE API Compliance Analysis

DII COE

 I&RTS

 DII

 Software

Compliance

 Process
Level of
Support?

Candidate Readiness

Integration

Testing

Effectiveness

DII.30.FNL.DIICOE.SQCP

January 22, 1997 1-3

The data obtained from the static metrics analysis provides the DII Engineering Office information
on the overall complexity and quality assessment of the applications by generating the populations
of the risk intervals for the QCP.

By focusing on a complexity and quality analysis of the design, implementation, and maturity of
the development organizations, management information describing many common integration
cost drivers (e.g., difficulty of changing the software, testing adequacy, and ease of portability to
new platforms and updated versions of COTS) becomes available. Using additional analytic
techniques, information projecting future integration difficulties by examining the potential
“avalanche” of the current low-to-medium risk components into high risk population provides the
DII Engineering Office with a glimpse into the level of support needed for future integration
activities.

Figure 1-1. COE Software Quality Compliance Assessment

DII.30.FNL.DIICOE.SQCP

January 22, 19971-4

The information obtained from the portability metrics analysis assesses the degree of compliance
with the approved COE configurations.

The values of these compliance metrics, when combined with the information in QCP risk
populations, are helpful in projecting the effort associated with rehosting to different platforms.
The portability analysis, when coupled with other types of COE programmatic information,
support DISA’s decision making process and planning for transfers of new hardware and software
technologies.

1.3 Referenced Documents

Defense Information Infrastructure (DII) Common Operating Environment (COE) Integration and
Runtime Specification (I&RTS), Version 2.0, October 23, 1995.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-1

2. SOFTWARE QUALITY COMPLIANCE PROCESS

2.1 Software Quality Compliance Process Goals

The software quality compliance process described in this Plan is to provide risk assessment
information to the DII COE Engineering Office to support the GCCS and GCSS activities of
building and integrating systems by:

C Identifying suspect components in the candidates that present significant risk factors in
current integration tasks; and problems in achieving and maintaining acceptable levels of
maintainability, correctness, and reliability.

C Identifying components in COE functions that are cost effective candidates for renovation
by tracking increases in medium-to-high risk populations and growth in complexity.

C Institutionalizing software quality compliance assessment techniques within the DII
community to effectively manage costs and risks of integration by providing a COE
software metrics and risk population database.

C Identifying usage of non-public APIs.

C Increasing testing effectiveness by analyzing data from Software Problem Reports (SPRs)
and QCP risk population intervals.

C Identifying components in candidates with portability risks by detecting usage of operating
system dependencies and non-compliance with approved COE COTS.

The software quality compliance assessment tasks produce information addressing each of these
COE management concerns. The complexity and quality metrics are collected from each
candidate’s source code by using commercial static analysis tools. A number of metrics collection
and analysis tools were used to provide the metrics in the dictionary. These tools collect metrics
for a wide variety of languages including, but not limited to, FORTRAN, Ada, C, C++, Pro-C and
FORTRAN, BAL, and PL-I. Currently, SQL is not supported by the vendors. The formulas for
the QCP (see Appendix C) are based on this set of metrics.

These metrics are used to provide an empirical description of the risk populations for the three
criteria in the QCP (Maintainability, Correctness, and Reliability), described in Table 2-1.

DII.30.FNL.DIICOE.SQCP

January 22, 19972-2

Table 2-1. QCP Definitions

QCP Criteria Definition

Maintainability Assessment of ease or difficulty in modifying the code.

Correctness Extent of simplicity and structure of the logic in the
application software.

Reliability Assessment of the fragility of the code during execution.

The QCP information identifies current medium-to-high risk components, such as FORTRAN and
C functions, as well as components in the software representing future risk as a result of
continued software related activities by the development organizations. The future medium-to-
high risk components represent excellent candidates for renovation as part of the ongoing
incremental development activities to continually reduce COE risks and costs.

The collected metrics provide the DII Engineering Office with information empirically describing
the effectiveness of the integration testing. Specifically, identifying components in the medium-to-
high risk QCP populations pinpoints those components with a high likelihood of containing
residual software faults. Discovery of these undetected faults, often embedded in complicated
control structures, typically plague integration testing activities, increases the planned effort, and
causes schedule slippage. Increased integration testing focuses on further validation of these
identified components to enhance a candidate’s readiness for COE releases.

The information obtained from portability analysis will assist the DII Engineering Office in making
technology infusion decisions. Specifically, the QCP medium-to-high risk populations information
can be combined with applications portability assessment metrics to support technology infusion
planning for the DII. Applications identified as containing medium-to-high percentages of
machine or Operating System (OS)-dependent code, usage of non-approved COE COTS, as well
as large populations of medium-to-high risk components are significant obstacles in planning
versions of COE using new technologies, such as CORBA.

2.2 Software Quality Compliance Information Collection

The DII focus of collecting information that describes different software quality characteristics of
source code is to gain a better understanding of risk factors when planning COE releases. The
DII software quality compliance evaluation currently contains five automated information
collection activities to provide visibility into the integration planning process. The information is
collected using the compliance checklists contained in Appendix A.

For each candidate, the information collection activities are:

C Static analysis of source code.
C Conformance analysis of APIs.
C Trend analysis of complexity and quality metrics.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-3

C Integration test effectiveness analysis.
C Application portability analysis.

2.3 Static Analysis of Source Code

The static analysis of the candidate’s source code builds a baseline of metrics containing
information on the complexity and quality of the software. Additionally, these metrics provide the
baseline to which future releases of a candidate can be compared. This is done to determine the
status of the quality as modifications are being made. This information also pinpoints those
components that may require further attention regarding testing; documentation; and, in some
cases, redesign and reimplementation to reduce the complexity.

The static analysis techniques can be applied to a wide variety of candidate software types. These
types can be either developing software or existing legacy systems in maintenance, whether
prototypes, incremental builds, or a full multi-phased lifecycle. These risk assessment techniques
are applicable to all domains, from real-time process control to information systems.

Source code will be submitted to the DII Engineering Office as part of the candidate evaluation
process. The complexity and quality metrics, contained in Table 2-2, will be collected from the
source code using a COTS tool. These metrics are described in detail in Appendix C.

Table 2-2. Component Metrics Dictionary

Component Metric Definition Threshold Value

Halstead’s Length Measure of modularity of the design. 350

Halstead’s Difficulty Measure of the difficulty of developing 50
the component.

Cyclomatic Number Measures the number of testable paths 15
in a component

Essential Complexity Measure of the structure of the testable 7
paths in a component.

Design Complexity Measures the complexity of the control 10
flow implemented by the design.

Source Lines of Code The physical length of a component. 70
(SLOC)

Control Density Measures the percentages of control .33
structures in a component.

Table 2-2. Component Metrics Dictionary (cont.)

DII.30.FNL.DIICOE.SQCP

Component Metric Definition Threshold Value

January 22, 19972-4

Table 2-3. Call Graph Metrics Dictionary

Maximum Number of Levels Measures the depth of 7
IF..THEN..ELSE Nests in components.

Number of Branching Nodes Measures the number of “gotos” or 7
number of abnormal exits from control
structures and loops.

Number of Input/Output Measures the number of ways in and 2
Nodes out of a component.

The values of these metrics are combined to provide information on the Maintainability,
Correctness, and Reliability of the code. These three criteria comprise the Quality Criteria Profile,
which is described in detail in Appendix C.

The set of metrics shown in Table 2-3 is collected to assess the complexity of the implementation
of a specific call graph architecture. This set of metrics assesses the data and control flow
complexity for the call graph in a manner similar to a component assessment.

Call Graph Metric Definition Threshold Value

Hierarchical Complexity A measure of the average 5
number of components on a
level.

Structural Complexity The average number of calls 3
per component in the call
graph.

Average Paths The average number of paths 2
per node in the call tree.

Number of Levels The number of levels in a claa 9
tree.

Entropy A measure of orderliness in 3
execution of the components
in a call graph.

As an additional information product for each application, the metric analysis results and risk
population information available from the QCP is detailed in a Complexity Analysis and Risk
Assessment Report. This report provides a view of system quality at the component level and is

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-5

intended to support DII planning activities to provide recommendations and guidance for the
developers.

Specifically, each COE candidate’s Complexity Analysis and Risk Assessment report contains the
following information:

C A description of the assessment process.

C A ranking of components in the high to medium risk categories.

C A statistical overview of each subdirectory (Actuarial Profile).

C Recommendations and guidance for ongoing software-related activities and process
improvement.

C Assessment of future software-related difficulties and risks.

C A listing of the languages for each build with the number of components in each, the
number of SLOC in those components, and the percentage of the total system contained in
each.

C For each build, by language:

- The percentage of components and corresponding statements that fall within
acceptable risk limits for Maintainability, Correctness, and Reliability.

- The percentage of components and corresponding statements that fall within
acceptable limits for program length, number of statements, component structure
and cyclomatic number, four key measures of component quality and complexity.

- An indicator of the complexity of the call structure in the specific architecture.

- The percentage of components and corresponding statements that belong to
medium-to-high risk populations in the QCP.

- The percentage of components and their associated statements exceeding the
thresholds of key component quality metrics.

- A measure of risk as determined by the number of components in common
assigned to the high risk population interval for each of the three Criteria. This
population is the Minimum Set (MS).

- A listing of those components that are in the medium and high risk population
intervals for all three Criteria in the QCP.

DII.30.FNL.DIICOE.SQCP

January 22, 19972-6

- A listing of those call roots with structures of such complexity that integration
testing is likely to be incomplete and which present a risk to the system.

- A list of components exceeding the thresholds for key metrics.

2.4 Static Analysis Metrics Dictionary

The metrics collected for the COE software quality compliance assessment are listed in Table 2-4
and are widely accepted as indicators of software complexity and quality. Components with
metric values exceeding the threshold values are viewed as suspect. The threshold values are
determined by accepted industry values for good software engineering practices. Specific
development organizations may use ranges of metric values. The values for the lower and upper
limits of a range are determined by the organization’s metric database of past projects.

The references contained in Appendix B are helpful in understanding the basic principles of
metrics analysis techniques and the interpretation of threshold values. A review of the literature
focusing on the fundamental metric definitions, collection, and analysis techniques is contained in
Software Engineering Metrics and Models by Conte, Dunsmore, and Shen. This reference is
critical to understanding specific metrics definitions and the necessity of a combined analysis of
different types of complexity metrics.

Additional analysis of source code is required to understand the conditions causing the metric
values to exceed the thresholds. Using a single metric value in this dictionary is not recommended
or valuable. A combined analysis of the set of metric values in Table 2-2 is required to provide
the information necessary for risk assessment.

2.5 Quality Criteria Profile

The formulas defining the three elements of the Quality Criteria Profile each use a specific set of
metrics from the dictionaries. The metrics in each formula were selected based on the importance
of the information for each element. The references in Appendix B are helpful in understanding
the relationship of each metric to the formulas. The distinct advantage of these metrics is the
invariance to the implementation language. For example, the cyclomatic number is the measure of
the number of independent paths through a component regardless of the implementation language.

After the complexity metrics in the dictionary are collected from each COE candidate, a criterion
is calculated by assigning a value of one to the value of each metric that falls within the acceptable
range and zero if otherwise. This value is multiplied by the weight assigned to that metric in the
formula. The total of the weighted values divided by the maximum possible value gives the
percentage that determines the criterion risk category. The values of the percentages of the
populations of components and corresponding SLOC are used in the DII Software Quality
Compliance Checklist contained in Appendix A.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-7

The QCP information quantitatively describes Maintainability, Correctness, and Reliability. This
information, collected for each COE candidate, provides the DII Engineering Office with an
automated, non-intrusive assessment of the level of Software Quality compliance.

The QCP and architectural complexity formulas and risk assignment numerical intervals are
contained in Appendix C.

2.6 Risk Population Assessment Process

The information products provided by the QCP formulas are used to filter the components in a
COE candidate into one of four risk intervals, as shown in Figure 2-1. The purpose of this
filtering process is twofold:

C Determine if the percentage of the population, measured in both number of components
and corresponding SLOC, is below the 20 percent rule of thumb.

C Pinpoint the components causing these populations to exceed the 20 percent rule of
thumb.

For the purposes of the COE Software Quality Assessment process, the DII Engineering Office
focuses on the components in either the medium or high risk interval. Typically, this combined
percentage should be less than 20 percent of the total population of components or corresponding
SLOC.

- Example of a Software Component Risk Interval -

No Low Medium High

Maintainability

Correctness

Reliability

No Low Medium High

No Low Medium High

- Criteria -

The QCP is a set of three formulas that rank components for current risks
by assessing metrics that evaluate the quality of the design and control
structures and testing challenges.

80 50 30100 0

80 50 30100 0

80 50 30100 0

DII.30.FNL.DIICOE.SQCP

January 22, 19972-8

Figure 2-1. QCP Risk Population Intervals

The assessment process of the risk population information provided by the QCP uses three non-
intrusive techniques, as shown in Figure 2-2, to further filter and assess the current medium-to-
high risk components in each of the COE candidates.

This assessment process also projects the medium-to-high risk components resulting from future
software-related activities (such as continued prototype development or maintenance) by the
applications developers. The increase in the current medium-to-high risk populations occurs due
to both insertion of new complex components and modifications of complex components in the
application’s baseline.

The three COE candidate assessment processes, shown in Figure 2-2, are:

C Medium-to-high Risk and Minimum Set (MS) Population
C Emerging Risks
C Complexity and Quality Factors.

Source Code
Reuse Libraries
Third Party

Minimum Set
 Analysis

Emerging Risk
 Analysis

 Complexity
 and
Quality Factors

 Candidate
 Assessment

MS

Future MS

 Complexity
 &
Quality Assessment

 Findings
 &
Recommendations

Metrics

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-9

Figure 2-2. Steps in the Static Analysis Process

2.6.1 Minimum Set Analysis

The first technique in the static analysis process is the identification of the components in the
Minimum Set. This technique, shown in Figure 2-3, identifies the common components in only
the high risk populations for each of the three Criteria in the QCP. The components in this
population are considered to represent the highest risk to all applications software-related
activities, such as integration and continued modifications by the developer.

 - Maintainability -

- Correctness -

- Reliability -

Common population in QCP high risk intervals is the highest risk to future activities.

High risk population

High risk population

High risk population

MS

DII.30.FNL.DIICOE.SQCP

January 22, 19972-10

Table 2-4. Rules for Assigning Risk Values

Figure 2-3. Minimum Set Analysis Process

Typically, the percentage of components in the MS population is low. For DII integration
planning purposes, risk values of Low (L), Medium (M), and High (H) are assigned to each
CSC/CSCI by first the computing the percentage of components and corresponding SLOC in the
MS for the candidate.

The value of the population percentage, measured for either the percentage of components or the
SLOC in those components, is preliminary assigned either L, M, or H by the rules shown in Table
2-4:

Risk Population Percentage

L MS%<4%

M 4<=%MS<6

H 6<=%MS

Inspection of the data in Figure 2-4 depicts a COE candidate with nine CSCs. The nine CSCs are
shown along the horizontal axis. The information in this figure indicates only two of the nine
CSCs, CSC_3, and CSC_6, do not have any high risk interval populations, which are shown on
the vertical axis. Seven of the nine CSCs have components in the high risk interval for at least
one of the three Criteria, shown as different patterns in the bars. Currently only CSC_4, CSC_5,

0

1

2

3

4

5

M
C
R
MS

High Risk and MS Analysis - C Code

CCS_1

CSC_2

CSC_3

CSC_4

CSC_5 CSC_6

CSC_7

CSC_8

CSC_9

Number of Components

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-11

Figure 2-4. Example of a High Risk Population and Minimum Set Distribution

and CSC _9 have MS populations. The components in the MS population represent the highest
risk to integration activities, as determined by this assessment process. Further inspection of this
figure indicates CSC_8 has high risk population in all three QCP Criteria, but currently the MS
population is zero. This information alerts the DII Engineering Office of an existing pocket of
complexity that will grow with continued software modifications.

Figure 2-5 contains an example of information on the distribution percentage of SLOC in a MS
population. In this example, each component in the MS population is identified, and the
percentage of SLOC in the component is also given. Inspection of CSC _4 indicates the presence
of two very large components, labeled 1 and 2. These two components should be considered for
re-engineering to mitigate the risk. The specific re-engineering activities should reduce the size,
loss of modularity, and complex control structures.

50

100

150

200

250

300

350

400

450

1
2

Distribution of MS Population SLOC - C Code

CSC_4

CSC_7 CSC_8

CSC_9

Inspection of the sizes of the MS population indicates the two
components in CSC_4 are each four times the sizes of the
components in the other three CSCs.

SLOC

DII.30.FNL.DIICOE.SQCP

January 22, 19972-12

Figure 2-5. Example of a Minimum Set Population

2.6.2 Medium-to-High Risk Population Analysis

The medium-to-high risk population assessment provides more detailed information on the
current population as measured in both percentages of number of components and corresponding
source lines of code. As always with static metrics analysis, the values of both number of
components and corresponding SLOC are important. This pair of metrics is extremely valuable in
understanding the current proportion of the software in a COE candidate actually in the medium-
to-high risk interval. For example, using both of these values helps to indicate if the existing
problems are a few, large components; many small, complex components; or a combination of
large and small components.

0

10

20

30

40

50

60

%NC
%SLOC

QCP Medium-to-High Risk Population - Reliability

CSC1

CSC_2

CSC_3

CSC_4

CSC_5 CSC_6

CSC_7

CSC_8

CSC_9

C Code

Percent

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-13

Figure 2-6. Medium-to-High Risk Population Percentage Distribution

Figure 2-6 provides an example of the medium-to-high risk population distribution for the
Reliability Criterion of the QCP. In this example, only CSC_4 and CSC_5 have percentages of
number of components or corresponding percentages of SLOC exceeding the 20 percent rule of
thumb.

This information provides important inputs for the DII Engineering Office to prepare and evaluate
risk reduction options for a COE application. Typically, complexity in software continues to
grow as repeated modifications build upon existing complexity. As this medium-to-high risk
population grows over time, the entire CSCI/CSC will gradually become a candidate for re-
engineering or become unusable and unaffordable.

Figure 2-7 contains an example of a medium-to-high risk population analysis for a COE
candidate. The combinations of medium-to-high risk intervals are listed starting with the highest
(H-H-H), the Minimum Set, to lowest. In Figure 2-7, the percentage of components and
corresponding percentage of SLOC in the CSCI/CSC are shown. Notice the large population
currently in Redesign Redesign Reimplement (H-H-M) intervals.

Future software modifications of the code in these components in the H-H-M risk interval will
cause migration to the H-H-H risk interval unless renovation reduces the complexity. The result
of the migration of components will result in over 20 percent of the software being in the
medium-to-high risk population.

0

2

4

6

8

10

H-H-H
H-H-M
H-M-H
H-M-M
M-M-M

The distribution of the population of the medium-to-high risk intervals
indicates the largest percentage in H-H-H (Minimum Set).

The categories are listed in descending order of risk.

The percentage of NC currently in the medium-to-high
risk population is .9%. Due to the presence of large
components, this value is actually 11.46% of the
SLOC.

There is concern over the population of the
H-H-M risk interval. The complexities in this
population will continue to grow with future
software modification activities unless reduction occurs.

C Code - Medium-to-High Risk Population Analysis

%NC

%SLOC

Percent

DII.30.FNL.DIICOE.SQCP

January 22, 19972-14

Figure 2-7. Example of a Medium-to-High Risk Population Analysis

After developing the baseline for each candidate, the DII Engineering Office tracks increases and
reductions in risk by a change analysis of the medium-to-high risk population. Specifically, not
only are increases or decreases in percentages tracked, but a correlation to changes in number of
components and SLOC are necessary to understand the impact on the risk. This information is
useful in assessing the stability and maturity of the application.

2.7 Emerging Risk Analysis

The second analysis technique focuses on obtaining an estimate on the potential increase in the
QCP high risk populations if future software modifications to candidates occur without
renovation of the current complex control and design problems. This emerging risk analysis,
depicted in Figure 2-8, uses the differences between the current high risk populations and the
current combined low and medium risks populations.

No Low Medium High

Maintainability

Correctness

Reliability

Expansion Factor of Current
 High Risk Populations

EF

Emerging risk analysis projects the population of the MS using averages of
the populations of all risk intervals. This value is used to estimate the
Expansion Factor (EF) of the current high risk populations for all three
Criteria. Emerging risk analysis provides insight into the possible increases
of complexity as software modified, and no renovation occurs to reduce risks.

Average of Low - High Risk Populations

80 50 30100 0

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-15

Figure 2-8. DII Software Emerging Risk Analysis

The Emerging Risk and Expansion Factor analysis represents the possible “avalanche” of
increasing risk if code modifications are performed on applications without prior renovation based
upon the risk population analysis.

Figure 2-9 provides an example of an Expansion Factor Analysis for the nine CSCs in the COE
candidate. For each CSC, the value of the Expansion Factor and size of the CSC are shown.
Notice the size of the CSC does not seem related on the EF value. CSC_1 and CSC_2 seem to
contain higher values of EF for the corresponding physical sizes.

The Emerging Risk estimation technique, described in Appendix C, does not assume the addition
of new, complex components into the baseline nor the deletion of components from the baseline.
The technique assumes equal likelihood of all components undergoing modifications and is
intended to provide a worst case outlook.

0

2

4

6

8

10

12

EF
Size

CSC_1

CSC_2

CSC_3

CSC_4

CSC_5 CSC_6

CSC_7

CSC_8 CSC_9

Emerging Risk Analysis - C Code

Expansion Factor (EF)

DII.30.FNL.DIICOE.SQCP

January 22, 19972-16

Figure 2-9. Example of an Expansion Factor Analysis

2.8 Complexity and Quality Factors Analysis

The third static analysis technique provides information on the complexity and quality factors of
the components in an application. This technique, depicted in Figure 2-10, obtains estimates of
the Control, Design, Size, and Process factors by averaging the combined populations for the low
to high risk intervals for a set of key metrics.

These key metrics were selected to provide information on the current populations exceeding
thresholds in design modularity, physical size in SLOC, control complexity, and the use of
unstructured control structures. High numbers of applications components exceeding the
thresholds for each of these four metrics can alert the DII Engineering Office in planning future
integration schedules.

Specifically, as shown in Figure 2-10, these factors are obtained by averaging the total risk
populations for the cyclomatic number, Program Length, SLOC and essential complexity metrics.
Further analysis proceeds by evaluating the relationship of design versus process, and design
versus size and cyclomatic number to detect the most suspect areas.

 Risk Intervals

Acceptable Medium High

Complexity & Quality Factor

Four key metrics provide an analysis of different, but related complexity and quality
factors. The analysis process uses the average of the total populations in the low
to high risk intervals for each of the four key metrics. This analysis provides
management insight into the four key complexity and quality problems currently
plaguing the software and the type and cost of renovation needed to reduce the risk.

Control

Design

Size

Process

Metric

Cyclomatic Number

Program Length

SLOC

Essential Complexity

15 50

350 520

70 200

7 40

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-17

Figure 2-10. DII Software Complexity and Quality Analysis

Figure 2-11 contains an example of the results of a complexity and quality factors analysis for a
COE candidate. For two CSCs, A and B in the candidate, there are two values for each of the
four complexity and quality factors. The first value is the percentage of components exceeding
the threshold, and the second value is the corresponding SLOC associated with the percentage of
components.

The bar graphs in Figure 2-11 indicate CSC_1, CSC_2, CSC_4, CSC_5, and CSC_9 have
exceeded the 20 percent rule of thumb. The results of this information alerts the DII Engineering
Office to the testing challenges associated with this candidate, as well as the increased likelihood
of embedded faults.

0

5

10

15

20

25

30

Design
Size
Control

CSC_1

CSC_2

CSC_3

CSC_4

CSC_5 CSC_6

CSC_7
CSC_8

CSC_9

Percentage of SLOC in CSCs Exceeding Key Metrics Thresholds - C Code

Percent

DII.30.FNL.DIICOE.SQCP

January 22, 19972-18

Figure 2-11. Example of Software Complexity and Quality Analysis Information

2.9 Static Analysis of API Code

The DII COE I&RTS provides guidance on public APIs for use during the building of
applications for the COE. One of the requirements for achieving Level 7 compliance is the degree
of usage of public APIs. To function as a measure of progress towards meeting this goal for both
DII and developers, the source code libraries and MAKEFILES will be assessed to locate
references to non-public API libraries. Frequent use of non-public APIs will be assessed and used
as information to determine the progress and schedule of meeting the target level of COE
Software Quality Compliance.

2.10 Trend Analysis of Application Versions Metric and QCP Risk
Populations

The trend analysis of metrics and risk population databases for COE candidates provides
information on the changes in the complexity of the software. These changes result from
modifications to existing software and/or introduction of new components. During DII
integration planning activities, significant increases in medium-to-high risk populations are
important factors in planning resources required to field new versions.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-19

Detection of increases of components in medium-to-high risk populations also may signal
problems in planned integration testing activities. Specifically, integration test schedules may not
be adequate for applications with significant increases in the medium-to-high risk populations.
Typically, significant increases in the populations of medium-to-high risks result in an increase in
the number of SPRs.

The trend analysis process evaluates the following information:

1. Population growth in number of components and corresponding SLOC.

2. Increases or decreases in the population of the combined medium-to-high risk
intervals for the number of components and corresponding SLOC.

3. Increases or decreases in the percentages of components exceeding the thresholds
for key metrics.

4. Increases or decreases in reported application SPRs.

5. Increases or decreases in the percentages of components and SLOC containing
OS-specific or implementation-specific language statements.

Figure 2-12 contains a sample of a trend analysis of the growth of the medium-to-high risk
population of a application. The steady increase of the value of the percentages of both the
number of components and corresponding SLOC indicates an increased integration risk in the
COE functions.

0

5

10

15

20

25

30

35

Version1 Version 2 Version 3

NC
SLOC

Percent Increase

DII.30.FNL.DIICOE.SQCP

January 22, 19972-20

Figure 2-12. Example of Trend Analysis of Medium-to-High Risk Population Growth

Figure 2-13 contains an example of a trend analysis of a complexity and quality analysis for a
function in the COE. In this figure, the percentages of the number of components (NC) and
corresponding SLOC exceeding the 20 percent rule of thumb are shown for two versions of a
candidate, V.1 and V.2, for each of the four complexity and quality factors. Notice the growth of
the sizes of the components, number of control paths, and usage of unstructured logic. Continued
growth of these population of components exceeding the thresholds of these key metrics will
increase the risk.

0 20 40 60

Design

Size

Control

Process

V.2 - SLOC
V.1 - SLOC
V.2 - NC
V.1 - NC

Percent NC and SLOC Exceeding Metrics Thresholds

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-21

Figure 2-13. Example of Trend Analysis of Software Complexity and Quality Analysis

2.11 Integration Test Effectiveness Analysis

The metrics collected from the complexity, quality, and portability analyses and conformance to
compliant APIs provide information obtainable from static analysis of the software. Extending
this set of metrics to include information obtainable from a dynamic analysis provides a more
encompassing software compliance assessment process.

The approach to obtaining dynamic information without actually executing the code is to use the
data obtainable from the SPRs generated during integration testing and field performance. This
information provides insight into the stability of the code delivered to the DII Engineering Office.
Examples of useful metrics obtainable from SPRs are the number of problems; potential
operational impact (Type 1, 2, 3, and 4); and, if possible, the amount of code changed to repair
the problems.

The risk information obtained from the static analysis of the current version of application source
code is synthesized with the information obtained from the dynamic analysis as well as
information from trend analysis of QCP medium-to-high risk populations of the previous versions.
This synthesis provides insight and guidance in assisting the DII Engineering Office and
application owners in further assessing integration readiness.

DII.30.FNL.DIICOE.SQCP

January 22, 19972-22

The further insight into the potential risk in the execution of a CSC/CSCI is provided by
inspecting the change of the percent of components in the MS. This value and the names of both
the components in the previous version and the new components represents a high degree of
vulnerability identified to the COE. Specifically, the components in the MS most likely contain
residual faults that will be difficult and time consuming for the application owner to repair upon
occurrence either during the integration or detection by the user. The synthesis with the
information provided by the dynamic metrics will pinpoint those CSCs/CSCIs with high
frequencies of repairs and occurrences of Type 1 and 2 problems.

Although the components in the MS represent the greatest risk to COE, the components in the
populations of the other combinations of medium and high risk intervals for the QCP (described in
Subsection 2.6.2) also require special emphasis in the integration testing planning and execution
process. The integration testing planning process will also give special emphasis to components
in the medium-to-high risk populations, and the test results will be evaluated to assess the impact
of software changes.

As part of the application source code submission process, test cases supplied by the application
owner will contain information on the QCP risk intervals of the components in CSC/CSCI paths
executed for each test case as well as other dynamic metrics. This information will be used as a
predictive, a trouble-shooting risk mitigation technique, and level assessment input.

2.11.1 Application Portability Analysis

The evaluation of applications to assess COE software quality compliance is based upon an
assessment of four factors that heavily influence portability. These four factors are:

C Use of non-compliant tools and COTS
C Use of non-compliant APIs
C Percent of OS-specific extensions to the implementation language
C Percent of non-POSIX functions used.

Using a COTS tool to perform static analysis of the source code detects OS-specific subsets of
language extensions used in the application. Unless usage of language extensions is managed and
minimized by the application owner’s coding standards and conventions, the components may
contain large occurrences of machine-dependent code. Typically, the extensions provide a
specific functionality that, if not available on a new platform, will require additional code
generation for porting. The more language extensions are used, the higher the difficulty and costs
of porting to other platforms. Additional risk is added to the GCCS integration process if code
modifications necessary for porting adversely impacts the application’s medium-to-high risk
populations.

The analysis process of application portability includes collection and analysis of
machine/language dependencies metrics. These metrics will be collected as part of the complexity
and quality metrics process. Specifically, language extensions provided by specific compilers and
operating system environments will be counted and expressed as percentages of number of

DII.30.FNL.DIICOE.SQCP

January 22, 1997 2-23

components and SLOC. The analysis will also correlate these percentages to the medium and
high risk populations and components. The DII Engineering Office will use this information to
mitigate risks in planning schedules to transition to new platform technologies.

DII.30.FNL.DIICOE.SQCP

January 22, 19972-24

This page intentionally left blank.

 Assessment Activity

1. Static analysis of candidate source code

2. Static analysis of API code

3. Trend Analysis

4. Integration testing effectiveness

5. Candidate portability analysis

6. Candidate integration readiness
 asessment

MONTHS

Source code
 delivery

COE CANDIDATE ASSESSMENT TASKS & SCHEDULE

Trend analysis
 Information

QCP risk
analysis
information

API code
 delivery

 Prelim
Integration
 Test
 Plan

 Final
Integration
 Test
 Plan

Portability
analysis
information

1 2 3 4 5 6 7 8 9 10 11 12

 COE
Turn-over

Candidate
assessment

DII.30.FNL.DIICOE.SQCP

January 22, 1997 3-1

3. COE SOFTWARE QUALITY EVALUATION SCHEDULE

The COE integration schedule is shown in Figure 3-1 and contains the evaluation activities for the
candidates.

Figure 3-1. COE Candidate Evaluation Schedule

Each COE developer, as specified by DISA, will provide source code and API code for static
analysis. As part of the integration risk management process, these applications will be analyzed
to build the baseline of QCP risk populations and assess portability of the source code and the
complexity of the API code. In subsequent deliveries of application version updates, a trend
analysis will provide information on changes in the previous populations of medium and high risk
components and portability.

The results of the baseline and if applicable, the trend analysis of the QCP medium-to-high risk
populations will be delivered to the COE integrator for possible revisions to the test plan, as
shown in Figure 3-1. Upon completion of the COE integration testing activities, the DII
Engineering Office will perform an analysis of the SPRs and the QCP medium-to-high risk
populations to determine the effectiveness of the testing activities.

Prior to COE turn-over to the Mission Applications developers, the DII Engineering Office will
prepare a COE Integration Readiness Assessment Report. This report will contain an assessment
of the risks of the COE software and identify, by component name, medium-to-high risk
populations.

DII.30.FNL.DIICOE.SQCP

January 22, 19973-2

This page intentionally left blank.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 A-1

APPENDIX A: DII SOFTWARE QUALITY
COMPLIANCE CHECKLISTS

Software quality is the fourth category in the four DII COE compliance categories. The
assessment process in this fourth category supports the seamless segment integration goals by:

C Ensuring usage of compliant APIs, COTS, and POSIX.

C Minimizing vulnerability to the ever-present and unintentional introduction of residual
faults in third party software.

C Easing the burden of source-level integration.

The information gained from this empirical and repeatable assessment process provides benefits to
both the candidate owners and DISA by:

C Determining the degree of portability currently in the software

C Identifying degrees of integration risk for CSCIs and pinpointing individual suspect
components for renovation.

The compliance evaluation process consists of both automatic and manual activities. Specifically,
a COTS tool provides the information necessary for Levels 1 - 4 from a static analysis of the
source code. Level 5 is evaluated using information supplied by the developer when the source
code for the COE candidate is delivered.

This appendix contains a series of checklists organized by compliance level for Category 4. The
levels range from compliance assessment with approved DISA APIs and COTS to risk interval
population analyses, trend analysis, and test effectiveness. Each item shall be answered as True,
False, or in the case of Level 5, Not Applicable (N/A).

The levels are listed in order of the degree of risk minimization associated with each level. For
example, an application could use compliant APIs and COTS while the CSCIs contain excessive
populations in the medium-to-high risk intervals. An application achieves the highest level of
compliance by:

C Implementing only compliant APIs and COTS.

C Containing populations of components in the medium-to-high risk interval that are less
than 20 percent of the total population of components and corresponding SLOC for each
CSCI in the candidate.

DII.30.FNL.DIICOE.SQCP

January 22, 1997A-2

C Containing populations of components that are less than the thresholds for key metrics for
more than 80 percent of the components and corresponding SLOC in a CSCI in the
candidate.

C Demonstrating effective testing of components in the medium-to-high risk interval.

C Minimizing populations of Type 1 and Type 2 software problems below the threshold.

C Reducing error occurrence rates to less than 7/KSLOC for each CSC in all of the CSCIs
for each candidate.

If any of these six requirements are not met by an application, the owner of the candidate has the
option to submit a plan to DISA for approval detailing specific activities and associated
milestones to remove the deficiencies.

An application obtaining a Level 5 rating presents the lowest risk in Category 4 to achieving DII
integration goals. The level of software quality compliance is determined by the highest numbered
level for which there are no False replies.

An application achieving Level 5 will be accepted and advertised as a DISA-approved DII COE
product. At DISA’s discretion, applications that are Level 3 or Level 4 compliant may be
accepted as prototypes and fielded at selected sites for evaluation purposes.

A.1 Conformance Analysis of API Code (Level 1)

T F 1. The number of CSCs in the CSCI using a compliant API is equal to 100
percent of the total population of CSCs for each CSCI.

T F 2. There is a DISA-approved migration plan number to re-engineer the source
code to implement compliant APIs for all non-compliant CSCs for each
CSCI.

A.2 Application Portability Analysis (Level 2)

T F 1. The number of CSCs in the CSCI using compliant tools and COTS is equal
to 100 percent of the total population.

T F 2. The number of CSCs in the CSCI using OS-specific extensions is less than
or equal to 20 percent of the total population.

T F 3. The number of CSCs in the CSCI using non-POSIX functions is less than
20 percent of the total population.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 A-3

T F 4. There is a DISA-approved migration plan number to re-engineer the source
code to implement compliant COTS for all non-compliant CSCs for each
CSCI.

A.3 Static Metrics Analysis (Level 3)

QCP Risk Interval Populations

T F 1. The number of components in the combined medium and high risk
population is less than 20 percent of the total population for each CSC.

T F 2. The SLOC in the combined medium and high risk population is less than or
equal to 20 percent of the total SLOC for each CSC.

T F 3. The number of components in the Minimum Set population is less than 4
percent of the total population for each CSC.

T F 4. The Expansion Factor is less than two for all of the CSCs in a CSCI.

T F 5. There is a DISA-approved migration plan number to re-engineer the source
code to reduce the medium-to-high risk population below the 20 percent
thresholds for each CSC.

Analysis Complexity and Quality

T F 1. The number of components below the thresholds for 4 of the complexity
and quality factors is less than 20 percent of the total population of
components or corresponding SLOC in the CSC.

T F 2. The number of components below the thresholds for 3 of the complexity
and quality factors is less than 20 percent of the total population of
components or corresponding SLOC in the CSC.

T F 3. The number of components exceeding the thresholds for 2 of the
complexity and quality factors is less than or equal to 20 percent of the
total population of components or corresponding SLOC in the CSC.

T F 4. The number of components exceeding the thresholds for 1 of the
complexity and quality factors is less than or equal to 20 percent of the
total population of components or corresponding SLOC.

DII.30.FNL.DIICOE.SQCP

January 22, 1997A-4

A.4 Trend Analysis of Complexity and Quality Factors and QCP Risk
Populations (Level 4)

T F 1. The number of components below the thresholds for 4 of the complexity
and quality factors remains less than 20 percent of the total population of
components or corresponding SLOC in each CSC.

T F 2. The number of components below the thresholds for 3 of the complexity
and quality factors remains less than or equal to 20 percent of the total
population of components or corresponding SLOC in each CSC.

T F 3. The number of components exceeding the thresholds for 2 of the
complexity and quality factors remains less than 20 percent of the total
population of components or corresponding SLOC in each CSC.

T F 4. The number of components exceeding the thresholds for 1 of the
complexity and quality factors remains less than 20 percent of the total
population of components or corresponding SLOC in each CSC.

T F 5. The number of components in the combined medium and high risk
population remains less than 20 percent of the total population for each
CSC.

T F 6. The SLOC in the combined medium and high risk population remains less
than 20 percent of the total SLOC for each CSC.

T F 7. The number of components in the Minimum Set population remains less
than 4 percent of the total population of components for each CSC.

T F 8. The Expansion Factor is still less than two for all of the CSCs in a CSCI.

A.5 Integration Test Effectiveness Analysis (Level 5)

T F N/A 1. The percent of Type 1 SPRs is less than 1 percent of the total
number of SPRs for all the CSCs in a CSCI.

T F N/A 2. The percent of Type 2 SPRs is less than 3 percent of the total
number of SPRs for all the CSCs in a CSCI.

T F N/A 3. Each CSC with greater than 20 percent of components or
corresponding SLOC in the medium-to-high risk intervals has been
adequately tested by the owner s SQA program.

T F N/A 4. The software error occurrence rate per 1K SLOC is less than 7 for
all CSCs in the CSCIs.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 A-5

T F N/A 5. There is a DISA-approved plan with risk mitigation information for
each CSCI exceeding thresholds for Type 1, Type 2 SPRs,
adequacy of testing, and error occurrence rate per 1K SLOC.

DII.30.FNL.DIICOE.SQCP

January 22, 1997A-6

This page intentionally left blank.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 B-1

APPENDIX B: BIBLIOGRAPHY

The references in this appendix are available to provide more information on using metrics to
assess quality and complexity of software.

This bibliography was assembled to provide basic information on the background of the common,
industry-accepted metrics. The majority of these metrics were researched from 1970 to 1980.
The research into complexity metrics by Halstead, Belady, Lehman, McCabe, Littlewood,
Mohanty, Musa, and others did not have the benefits of the COTS tools that today are widely
available. The current literature focuses more on cost benefits of using metrics to quantitatively
manage software-related activities.

BEIZER, BORIS: Software System Testing and Quality Assurance, Van Norstrand Reinhold
Co., 1984.

BOEHM B.W.: Characteristics of Software Quality, TRW North Holland, 1975.

CHIDAMBER, S. and KEMERER, C.: A Metrics Suite for Object Oriented Design, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, June, 1994

COLEMAN D., ASH, D., LOWTHER B. and OMAN, P.: Using Metrics to Evaluate Software
System Maintainability, IEEE Computer, Aug., 1994.

CONTE S. D., DUNSMORE H.E. and V.Y. SHEN.: SOFTWARE ENGINEERING METRICS
AND MODELS, Benjamin/Cummings Publishing Company, 1986.

DeMARCO, T.: Structured Analysis and System Specification, Prentice-Hall, 1978.

DUNN, ROBERT H.: Software Defect Removal, McGraw-Hill Book Company, ISBN 0-07-
018313-9, 1984.

GRADY, R. B. and CASWELL, D.: SOFTWARE METRICS: ESTABLISHING A
COMPANY-WIDE PROGRAM, PRENTICE-HALL, 1987.

HALSTEAD, M.H.: Elements of Software Science, North Holland, Elsevier , 1977.

HENNELL, M.A., HEDLEY, D., and WOODWARD, M.R.: Experience with Path Analysis and
Testing Programs, University of LIVERPOOL Publications.

On Program Analysis, University of LIVERPOOL Publication.

Quantifying the Test Effectiveness of Algol 68 Programs, University of LIVERPOOL
Publication.

DII.30.FNL.DIICOE.SQCP

January 22, 1997B-2

HENRY, KAFURA and HARRIS: On the Relationships Among Three Software Metrics, ACM
Workshop/Symposium on Measurement and Evaluation of Software Quality, 1981 (Proceedings).

HERNDON, M.A.: An Approach Toward the Development of Functional Encoding Model of
Short Term Memory During Reading. Journal of Reading Behavior, Vol. X, No. 2, Summer
1978, pp. 141-148.

HERNDON, M.A. and BECKER, W.: Metric Sampling in the Implementation of the Reliability
Profile. Proceedings of the Third Minnowbrook Workshop on Software Performance Evaluation,
Blue Mountain Lake, NY. 1980.

HERNDON, M.A. and KEENAN, A.P.: Analysis of Error Remediation Expenditures During
Validation. Proceedings of the Third International Conference on Software Engineering, pp. 202-
206, May 10-11, 1978, Atlanta, GA.

LORAL FEDERAL SYSTEMS: Software Reuse Metrics, Reusability Metrics and Economic
Models, April, 1996.

McCABE, T.: A Complexity Measure. IEEE Transactions on Software Engineering, Vol. SE-2,
No. 4, pp. 308-320, December 1976.

McCABE,T. and BUTLER, C.W.: Design Complexity Measurement and Testing,
Communications of the ACM, Vol. 32, No. 12, pp. 1415-1425, December 1989.

McCALL, J.A.: Factors in Software Quality, General Electric, no. 77C1502, June 1977.

MILLER, G.A.,: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information, The Psychological Review, Vol. 63, no. 2 (March 1956),
pp. 81 - 97.

NEEJMEH, B.A.: NPATH: A Measure of Execution Path Complexity and its Applications,
Communications of the ACM, Vol. 31, No. 2, 1988.

MOHANTY, S.N.: Models and Measurements for Quality Assessment of Software Computing
Surveys, Vol. 11, No. 3, September 1979.

MUSA, J.D.: The Measurement and Management of Software Reliability, Proceedings of the
IEEE, Vol. 68, no. 9 (Sept. 1980), pp. 1131-1143.

MYERS, G.J.: Reliable Software Through Composite Design, Petrucelli/Charter, N.Y., 1975.

MYERS, G.J.: The Art of Software Testing, JOHN WILEY & SONS, 1979.

SCHUTT, D.: On a Hypergraph Oriented Measure for Applied Computer Science, in Proc.
COMPCON, pp. 295-296, 1977.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 B-3

WARD, W.T. and HEWLETT PACKARD: Software Defect Prevention Using McCabe s
Complexity Metric, Hewlett-Packard Journal, pp. 65-68, April 1989.

WOODWARD, M.R.: An Investigation into Program Paths and Their Representation, Technique
et Science Informatique, Vol. 8, No. 4, 1984.

YOURDON, E.: Structured Walkthroughs, (Third Edition), Yourdon Press, 1985.

DII.30.FNL.DIICOE.SQCP

January 22, 1997B-4

This page intentionally left blank.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 C-1

APPENDIX C: DII SOFTWARE QUALITY
ASSESSMENT PROCESS

C.1 Static Analysis Metrics Dictionary

C.1.1 Component Metrics Dictionary

The metrics collected for the COE software quality compliance assessment are listed below and
are widely known as indicators of software complexity and quality. Components with metric
values exceeding the threshold are viewed as suspect. Additional analysis of source code is
required to understand the conditions causing the metric values to exceed the thresholds. Usage
of a single metric value in this dictionary is not recommended or valuable. Analysis of the set of
metric values is required to provide the information necessary for risk assessment. See Appendix
B for additional references.

C.1.1.1 Halstead’s Program Length

This is a measure of design, specifically modularity. Modularity is determined during high-level
software development activities, and the cost can be high to re-modularize a legacy system.

Threshold Value: 350

Collection Process:

Count the number of unique and total occurrences of operands and operators in a logical unit.
These values represent the volume and density of information in the unit.

Example:

X:=+3; N1 (number of operands) = 10
IF X>B THEN N2 (number of operators) = 10
A:=B; n1 (number of unique operands) = 4
B:=X; n2 (number of unique operators) = 4
ELSE
A:=X; Length = N1 + N2 = 20

Informational Value:

If the volume or density of the unit exceeds the threshold values, the unit probably needs to be
modularized or simplified.

DII.30.FNL.DIICOE.SQCP

January 22, 1997C-2

C.1.1.2 Halstead’s Difficulty

This is a measure of how difficult the component was to create. Typically, the harder the
development challenge, especially in the “build a little, test a little, and field a little” paradigm, the
more risky the integration activities. This is especially true of older, stove-pipe legacy systems.

Threshold Value: 50

Collection Process:

Refer to collection process for length. Difficulty is calculated as the inverse of Program Level.
Program Level relates the actual Volume against a logical unit’s Optimal Volume. Halstead
considered an optimal program to a call to a written procedure.

Optimal Volume is defined as: V* = (2+n2) log2 (2+n2)

Informational Value:

Measures how difficult the component was to develop.

Typically, the greater the development challenge, the more costly future software-related
activities.

C.1.1.3 Cyclomatic Number

A measure of the number of testable paths in a module. Values exceeding the threshold usually
signal a too informal implementation of control logic.

Threshold Value: 15

Collection Process:

Develop a directed graph to represent the control structure of the logical unit. The control graph
is developed by representing the code as a series of nodes, conditions, ends of conditions, and
edges. A node is a statement or block of sequential statements, represented on the graph as a
circle. A condition, represented as a diamond, has multiple branches. The end of the condition
represents the end of the branches. An edge is the flow of control between nodes.

Informational Value:

Measures the difficulty and feasibility of the testing.

Control structures with large values of cyclomatic number may contain residual errors in the
control logic.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 C-3

C.1.1.4 Essential Complexity

A measure of the structure of testable paths in a component. Values exceeding the threshold
usually signal an unstructured implementation of control logic.

Threshold Value: 7

Collection Process:

Develop a directed graph to represent the control structure of the logical unit. This graph should
contain only the four basic and simple structured constructs: Sequence, If-Then (or If-Then-
Else), Loops (While-Do and Do-Until), Case. Replace occurrences of unstructured constructs by
one of the four simple structured constructs.

Informational Value:

Measures the difficulty and feasibility of the testing as the presence of unstructured constructs
increases effort of testing as well as future code modifications.

Control structures with large values of essential complexity may need process improvement.

C.1.1.5 Design Complexity

This is a measure of the control of flow implemented by the design. This metric indicates the
degree of difficulty of integration testing.

Threshold Value: 10

Collection Process:

Develop a reduced directed graph to represent the control structure of the logical unit. This
graph should contain only decisions and nodes impacting calls to subordinate logical units.

Informational Value:

Measures the minimum number of integration tests.

Control structures with large values of essential complexity may need their design simplified.

C.1.1.6 Source Lines of Code

The physical length of software is known to be a factor in determining the difficulty of changing
legacy systems.

Threshold Value: 70

DII.30.FNL.DIICOE.SQCP

January 22, 1997C-4

Collection Process:

Count the number of complete executable statements. Comments are not included.

Informational Value:

Measures the difficulty of understanding the functionality of the software.

Logical units with large values of SLOC may need design simplification and process
improvement.

C.1.1.7 Control Density

A measure of the “richness” of decision nodes in a module. A high density module will be more
difficult to maintain than a less dense one.

Threshold Value: .33

Collection Process:

Count the number of control statements and the number complete executable statements not
including comments. Control density is the ratio of the number of control statements to the total
number of statements.

Informational Value:

Measures the difficulty of understanding the functionality of the software.

Logical units with large values of control density may need design and control structure
simplification and process improvement.

C.1.1.8 Maximum Number of Levels

Since the 1950’s, Cognitive Sciences studies have shown that groups that contain more than
seven pieces of information as increasingly harder for people to understand in problem solving.

Threshold Value: 7

Collection Process:

Count the number of If ...Then or If ...Then..Elses in a nest.

Informational Value:

Measures the difficulty of understanding the control logic of the software.

DII.30.FNL.DIICOE.SQCP

January 22, 1997 C-5

Logical units with a large number of nested levels may need implementation simplification and
process improvement.

C.1.1.9 Number of Branching Nodes

Higher values indicate possible use of “gotos” and/or abnormal exits from control structures such
as loops. This problem is an indicator of unstructured design and increases the testing difficulty.
For the components written in C, a higher value may be permitted due to the legitimate use of C
“breaks” in a “switch” statement.

Threshold Value: 7

Collection Process:

Refer to the essential complexity collection process.

Informational Value:

Increases the difficulty of testing the control logic of the software.

C.1.1.10 Number of Input/Output Nodes

Programming practices today state there should be one way into a module and one way out.

Threshold Value: 2

Collection Process:

Refer to the essential complexity collection process.

Informational Value:

Measures the difficulty of testing the control logic of the software.

Logical units a large number of input/output nodes may need implementation simplification and
process improvement.

C.1.2 Call Graph Metrics Dictionary

The metrics discussed in this subsection are collected to assess the complexity of the
implementation of a specific call graph architecture. The information provided by this set of
metrics assesses the data and control flow complexity for the call graph similar to an assessment
within a component. The metrics focus on the modularity of the design, complexity of the
implementation, amount of understanding needed to modify the code, projected testing effort, and

DII.30.FNL.DIICOE.SQCP

January 22, 1997C-6

adherence to industry-accepted good programming practices. These metrics are collected by the
COTS tool and would be impractical to collect manually.

C.1.2.1 Hierarchical Complexity

A measure of the average number of components on a level. The greater the number of
components, the greater the number of test cases required to test effectively.

Threshold Value: 5

Collection Process:

Prepare the call graph for each root node in the hierarchy.

Informational Value:

Measures the difficulty of testing the software.

Applications with many component levels may contain a large number of untested paths that tend
to be unexpectedly executed. This problem can plague client/server applications.

C.1.2.2 Structural Complexity

The average number of calls per component in the call graph. The larger the value of this metric,
the greater the difficulty in testing and debugging the code.

Threshold Value: 3

Collection Process:

Prepare the call graph for each root node in the hierarchy.

Informational Value:

Measures the difficulty of testing the software.

Applications with large values of component levels may contain a large number of untested paths
that tend to be unexpectedly executed. This problem can plague client/server applications.

C.1.2.3 Average Paths

The average number of paths in the call tree. As the value of this metric increases, the testing and
debugging becomes more difficult.

Threshold Value: 2

DII.30.FNL.DIICOE.SQCP

January 22, 1997 C-7

Collection Process:

Prepare the call graph for each root node in the hierarchy.

Informational Value:

Measures the difficulty of testing the software.

Applications with large values of component levels may contain a large number of untested paths
that tend to be unexpectedly executed. This problem can plague client/server applications.

C.1.2.4 Number of Levels

The number of levels in the call tree. As the depth of a tree increases, the testing challenge
increases.

Threshold Value: 9

Collection Process:

Prepare the call graph for each root node in the hierarchy.

Informational Value:

Measures the difficulty of testing the software.

Applications with large values of component levels may contain a large number of untested paths
that tend to be unexpectedly executed. This problem can plague client/server applications.

C.1.2.5 Entropy

A measure of the orderliness in the execution of the components in a call graph. The less order in
the execution paths, the harder to test and debug.

Threshold Value: 3

Collection Process:

Prepare the call graph for each root node in the hierarchy.

Informational Value:

Measures the difficulty of adequately testing the software. Understanding the flow of data
becomes increasing difficult.

DII.30.FNL.DIICOE.SQCP

January 22, 1997C-8

Applications with large values of component levels may contain a large number of untested paths
that tend to be unexpectedly executed. This problem can plague client/server applications.

C.2 Quality Criteria Profile

The criterion formulas that define the members of the Quality Criteria Profile each use a specific
set of metrics. After the metrics in the dictionary are collected from each COE candidate, a
criterion is calculated by first assigning a value of one to each metric that falls within the
acceptable range and zero if otherwise. This value is multiplied by the weight assigned to that
metric in the formula. The total of the weighted values divided by the maximum possible value
gives the percentage used to determine the criterion category. The QCP for the components
provides information describing Maintainability, Correctness, and Reliability. Currently, there is a
QCP computed for the components and an architecture metric value computed for the call graphs.

C.2.1 QCP Formulas and Risk Assignment Intervals

The information provided by the QCP risk interval assignments provides DII with a non-intrusive
assessment of COE Software Quality compliance for each candidate.

Maintainability: Effort required to modify the applications software.

Correctness: Extent of simplicity and structure in the application software logic.

Reliability: Extent to which the applications software performs functions with required
precision and robustness.

QCP CRITERIA: MAINTAINABILITY

MAINTAINABILITY = 3 * Program Length + Number of Statements + Maximum Levels +
2 * Cyclomatic Number + Number of Branching Nodes.

Risk Interval Risk Reduction Score Range

None Accept as is 80-100

Low Improve documentation 50-80

Medium Re-implement control logic 30-50

High Re-design 0-30

QCP CRITERIA: CORRECTNESS

CORRECTNESS = Halstead’s Difficulty + Number of Statements + 2 * Cyclomatic Number

DII.30.FNL.DIICOE.SQCP

January 22, 1997 C-9

Risk Interval Risk Reduction Score Range

None Accept as is 75-100

Low Improve testing 50-75

Medium Re-implement control logic 25-50

High Re-design 0-25

QCP CRITERIA: RELIABILITY

RELIABILITY = Program Length + 2 * Maximum Levels + 3 * Cyclomatic Number +
Number of Branching Nodes + Number of Input and Output Nodes +
Control Density

Risk Interval Risk Reduction Score Range

None Accept as is 75-100

Low Improve testing 50-75

Medium Re-implement control logic 25-50

High Re-design 0-25

Together the three Criteria define the QCP for the set of components in a COE candidate. For
each Criteria, these computed values are used to assign a component membership in a risk interval
with a recommended course of action. The lower and upper ranges associated with each category
are set by the analyst based on past experiences and good software engineering practices.

The metrics process for collection and analysis of the call graph metrics is similar to the process
used to generate the QCP.

ARCHITECTURE

ARCHITECTURE = Normalized value of (Hierarchical Complexity + Structural Complexity +
Average Paths + Levels + Entropy)/5

Category Score Range

ACCEPT 60-100

REDESIGN 0-59

DII.30.FNL.DIICOE.SQCP

January 22, 1997C-10

C.3 Minimum Set Assessment Process

The steps used in the MS assessment process are:

Step 1: For each component in the candidate CSCI/CSC, risk population information is
collected for each Criteria in the QCP.

Step 2: The high risk components are listed for each QCP Criteria.

Step 3: The common components falling in the high-risk population interval for all three
Criteria in the QCP are identified as the Minimum Set.

C.4 Emerging Risk Assessment Process

The steps in the Emerging Risk analysis are:

Step 1: For each element in the component set, a risk analysis is performed for each
Criteria in the QCP.

Step 2: The number of elements that fall into each of the three intervals are counted: Low,
Medium, and High.

Step 3: A calculation is performed using the values calculated in Step 2 to determine the
Expansion Factor.

C.5 Complexity and Quality Analysis Assessment Process

The steps in the Complexity and Quality Analysis are.

Step 1: For each element in the component set, a risk analysis is performed for each of the
4 metrics.

Step 2: The medium and high risk elements are listed for each metric.

Step 3: A count is made of elements in the medium and high risk intervals and the
percentage of the total number of components calculated.

